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COMPILER-GUIDED SOFTWARE
ACCELERATOR FOR ITERATIVE HADOOP®
JOBS

RELATED APPLICATION INFORMATION

This application claims priority to provisional application
Ser. No. 61/680,299 filed on Aug. 7, 2012, incorporated
herein by reference.

BACKGROUND

1. Technical Field

The present invention relates to data distribution, and more
particularly to a compiler-guided software accelerator for
iterative HADOOP® jobs.

2. Description of the Related Art

HADOOP® is the most commonly used open-source
framework for MapReduce and processing large amounts of
data. Data transfer and synchronization overheads of inter-
mediate data for iterative HADOOP® applications is prob-
lematic. The problem arises because distributed file systems,
such as HADOOP® Distributed File Systems, perform
poorly for small short-lived data files.

HADOOP® launches a new job in every iteration which
executes the same code repeatedly and reads invariant input
data. Launching and scheduling new jobs is expensive.

Ajobis acollection of map and reduce tasks. Not all reduce
tasks in a job finish at the same time. In an iterative
HADOOP® workflow, the next iteration is launched upon
completion of the current job. This prohibits asynchrony and
parallelism across iterations.

No solutions currently exist to solve the aforementioned
problems that provide a solution capable of working within
the HADOOP® ecosystem without any changes to the soft-
ware stack and without additional developer effort.

SUMMARY

These and other drawbacks and disadvantages of the prior
art are addressed by the present principles, which are directed
to a compiler-guided software accelerator for iterative
HADOOP® jobs.

According to an aspect of the present principles, there is
provided a method. The method includes identifying inter-
mediate data, generated by an iterative HADOOP® applica-
tion, below a predetermined threshold size and used less than
apredetermined threshold time period. The intermediate data
is stored in a memory device. The method further includes
minimizing input, output, and synchronization overhead for
the intermediate data by selectively using at any given time
any one of a Message Passing Interface and a HADOOP®
Distributed File System as a communication layer. The Mes-
sage Passing Interface is co-located with the HADOOP®
Distributed File System

According to another aspect of the present principles, there
is provided a method. The method includes identifying a set
of map tasks and reduce tasks capable of being reused across
multiple iterations of an iterative HADOOP® application.
The method further includes reducing a system load imparted
on a computer system executing the iterative HADOOP®
application by transforming a source code of the iterative
HADOOP ® application to launch the map tasks in the set
only once and keep the map tasks in the set alive for an
entirety of the execution of the iterative HADOOP® applica-
tion.
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According to yet another aspect of the present principles,
there is provided a method. The method includes automati-
cally transforming an iterative HADOOP® application to
selectively use at any given time any one of a Message Pass-
ing Interface and a HADOOP® Distributed File System
depending on parameters of a data transfer in the iterative
HADOOP® application. The Message Passing Interface is
co-located with the HADOOP® Distributed File System. The
method further includes enabling concurrent execution by at
least one processor of a reduce task from an iteration n and
map tasks from an iteration n+1 in the iterative HADOOP ®
application, n being an integer. The enabling step includes
replacing an invocation to a runJob( ) function in the iterative
HADOOP® application by an invocation to a submitJob( )
function. The enabling step further includes inserting a func-
tion call into the iterative HADOOP® application for block-
ing and reading model data from a Message Passing Interface
based data distribution library connected to the Message
Passing Interface.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 is a block diagram illustrating an exemplary pro-
cessing system 100 to which the present principles may be
applied, according to an embodiment of the present prin-
ciples;

FIG. 2 shows a system 200, in accordance with an embodi-
ment of the present principles;

FIG. 3 shows the architecture of a Nimble (MPI-based data
distribution) library 300, in accordance with an embodiment
of the present principles;

FIG. 4 shows an exemplary method 400 for software accel-
eration for iterative HADOOP® jobs using a TaskReuse Opti-
mization, in accordance with an embodiment of the present
principles;

FIG. 5 shows an exemplary method 500 for software accel-
eration for iterative HADOOP® jobs using an AsyncPipeline
Optimization, in accordance with an embodiment of the
present principles; and

FIG. 6 shows an exemplary method 600 for software accel-
eration for iterative HADOOP® jobs using a FastPath opti-
mization, in accordance with an embodiment of the present
principles.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

The present principles are directed to a compiler-guided
software accelerator for iterative HADOOP® jobs.
HADOOP® refers to an open-source software framework for
supporting  data-intensive  distributed  applications.
HADOOP® implements a computational and programming
model known as MapReduce, where an application is divided
into many fragments of work that can be executed or re-
executed on any node (e.g., computer) in, e.g., a cluster (col-
lection of nodes). HADOOP® and MapReduce are described
further herein, along with the inventive features of the present
principles applied thereto.

Advantageously, in an embodiment, the present principles
solve the problem of minimizing data transfer and synchro-
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nization overheads of intermediate data for iterative MapRe-
duce/HADOOP® applications. The problem arises because
distributed file systems, such as HADOOP® Distributed File
Systems, perform poorly for small short-lived data files. In an
embodiment, the present principles solve the problem by
creating an MPI-based in-memory data distribution library
for HADOOP® and developing a compiler transformation
for selectively and automatically replacing some of the invo-
cations to a HADOOP® Distributed File System (HDFS) by
invocations to the library. In an embodiment, the solution is
designed as a lightweight plug-in to the HADOOP® stack,
and provides performance gains without any modification to
either the software stack or the applications. As such, the
present principles can be easily used with existing
HADOOP® systems. This and other advantages are provided
by the present principles.

Advantageously, in an embodiment, the present principles
solve the problem of keeping jobs (i.e., map and reduce tasks)
alive across iterations in order to minimize the overhead of
launching a new job in each iteration. In an embodiment, the
present principles solve the problem by applying compiler
transformations to the HADOOP® application.

Advantageously, in an embodiment, the present principles
solve the problem of introducing asynchrony and parallelism
across iterations, such that reduce tasks from one iteration can
execute in parallel with map tasks from the next iteration. In
an embodiment, the present principles solve the problem by
applying compiler transformations to the HADOOP® appli-
cation.

Referring now in detail to the figures in which like numer-
als represent the same or similar elements and initially to FIG.
1, a block diagram illustrating an exemplary processing sys-
tem 100 to which the present principles may be applied,
according to an embodiment of the present principles, is
shown. The processing system 100 includes at least one pro-
cessor (CPU) 104 operatively coupled to other components
via a system bus 102. A cache 106, a Read Only Memory
(ROM) 108, a Random Access Memory (RAM) 110, an
input/output (I/O) adapter 120, a sound adapter 130, a net-
work adapter 140, a user interface adapter 150, and a display
adapter 160, are operatively coupled to the system bus 102.

A first storage device 122 and a second storage device 124
are operatively coupled to system bus 102 by the I/O adapter
120. The storage devices 122 and 124 can be any of a disk
storage device (e.g., a magnetic or optical disk storage
device), a solid state magnetic device, and so forth. The stor-
age devices 122 and 124 can be the same type of storage
device or different types of storage devices.

A speaker 132 is operative coupled to system bus 102 by
the sound adapter 130.

A transceiver 142 is operatively coupled to system bus 102
by network adapter 140.

A first user input device 152, a second user input device
154, and a third user input device 156 are operatively coupled
to system bus 102 by user interface adapter 150. The user
input devices 152, 154, and 156 can be any of a keyboard, a
mouse, a keypad, an image capture device, a motion sensing
device, a microphone, a device incorporating the functional-
ity of at least two of the preceding devices, and so forth. Of
course, other types of input devices can also be used, while
maintaining the spirit of the present principles. The user input
devices 152, 154, and 156 can be the same type of user input
device or different types of user input devices. The user input
devices 152, 154, and 156 are used to input and output infor-
mation to and from system 100.

A display device 162 is operatively coupled to system bus
102 by display adapter 160.

25

40

45

50

65

4

Of course, the processing system 100 may also include
other elements (not shown), as readily contemplated by one
of skill in the art, as well as omit certain elements. For
example, various other input devices and/or output devices
can be included in processing system 100, depending upon
the particular implementation of the same, as readily under-
stood by one of ordinary skill in the art. For example, various
types of wireless and/or wired input and/or output devices can
be used. Moreover, additional processors, controllers, memo-
ries, and so forth, in various configurations can also be uti-
lized as readily appreciated by one of ordinary skill in the art.
These and other variations of the processing system 100 are
readily contemplated by one of ordinary skill in the art given
the teachings of the present principles provided herein.

Moreover, it is to be appreciated that system 200 described
below with respect to FIG. 2 is a system for implementing
respective embodiments of the present principles. Part or all
of'processing system 100 may be implemented in one or more
of the elements of system 200.

Further, it is to be appreciated that processing system 100
may perform at least part of the method described herein
including, for example, at least part of method 400 of FIG. 4
and/or at least part of method 500 of FIG. 5 and/or atleast part
of method 600 of FIG. 6. Similarly, part or all of system 200
may be used to perform at least part of method 400 of FIG. 4
and/or at least part of method 500 of FIG. 5 and/or atleast part
of method 600 of FIG. 6.

HADOOP® has emerged as the dominant open-source
platform for large-scale data processing. HADOOP® sup-
ports MapReduce style of programming and provides devel-
opers an easy to use application programming interface
(API). HADOOP HADOOP® is rapidly evolving into an
ecosystem, allowing new technologies to be built around and
on top of it. Given the diverse set of workloads that
HADOOP® supports, domain-specific optimizations hold a
lot of promise.

Herein, we advocate the idea of developing domain-spe-
cific software accelerators for HADOOP® that can be
deployed and maintained independently without requiring
modification to the HADOOP® stack or to the application.
This approach is complementary to that of creating domain-
specific APIs or customized HADOOP® stacks, which has
been the primary trend so far.

A cross-industry study of HADOOP® workloads shows
that majority of interactive HADOOP® jobs are iterative,
operate on relatively small input datasets ranging from a few
MBs to a few GBs, and can be executed in memory.

We develop an industrial-strength software accelerator,
called Nimble, targeted towards iterative HADOOP® jobs.
Nimble has two key components: an MPI-based data distri-
bution library that coexists with HDFS; and a compiler for
applying source-to-source transformations to HADOOP®
applications.

HADOOP® is the dominant open-source framework for
MapReduce. HADOOP® provides an easy to use API for
developing large scale data parallel applications as well as
open-source and commercial middleware for data analytics.

With the growing popularity of HADOOP® , the diversity
of applications being built on top of it (directly or indirectly)
is increasing. Originally intended for oftline batch-processing
jobs, HADOOP® is now being increasingly used for short
and interactive jobs, which can be characterized based on
their structure, datatlow characteristics, input data size and
execution time. Improving the performance ofthese jobs is an
open problem.

A description will now be given of a design rationale, in
accordance with an embodiment of the present principles.
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Performance requirements that are common across the dif-
ferent categories of applications can be identified and
addressed by improving HADOOP®. For category-specific
requirements, however, specialized solutions are required.
These can be delivered in the form of domain-specific APIs
that either work within the HADOOP® ecosystem (e.g.,
HADOOP®, HADOOP® Online, “Partitioned Iterative Con-
vergence” (PIC) or outside it (Twister, “Resilient Distributed
Datasets” (RDD). In both cases, developer involvement is
required and adoption depends on developers’ expertise and
willingness to understand and use the APIs. A third approach
is to retain the HADOOP® API but implement a different
software stack underneath; which provides a viable alterna-
tive to organizations running interactive in memory MapRe-
duce jobs without requiring additional development effort or
training.

Herein, we propose another way to deliver domain-specific
performance solutions: as software accelerators. Software
accelerators are libraries that are retrofitted into applications
selectively using source-to-source compiler transformations
(as shown in TABLE 1). In particular, TABLE 1 shows
source-to-source transformations which allow selective
replacement of function calls (as shown in the second snippet)
as compared to solutions that virtualize the HADOOP® API
by implementing a different stack underneath (as shown in
the third snippet). Additional compiler optimizations are
applied to the application source code when possible. In this
model, the HADOOP® stack is retained as it is and minimal
developer involvement is needed. The application is prepro-
cessed and optimized using a source-to-source compiler
before being compiled and executed.

TABLE 1

public void f( ){

public void f{ ) { public void f{ ) {

differentStack.

hdfs.write( ); hdfs.write();
write( ) ;
hdfs.write( ); if(.) {
nimble.write( ); differentStack.
} telse{ write( ) ;
hdfs.write( );
¥
¥

Software accelerators (much like hardware accelerators)
are installed and maintained independently and co-exist with,
rather than replace, the original software stack. Software
accelerators act as domain-specific composable plug-ins.

This approach is best suited for organizations that run a
variety of MapReduce jobs (e.g., batch-processing, interac-
tive, streaming, and so forth) and, therefore, find it hard to
switch stacks. For such organizations, a combination of gen-
erality/familiarity offered by HADOOP® and improved per-
formance (offered by software accelerators) is desirable.

Software accelerators can be incrementally deployed
alongside existing HADOOP® installations. In design phi-
losophy, software accelerators empower the applications by
exporting certain middleware-level functionalities to applica-
tion space, instead of modifying the underlying stack/OS.
Software accelerators are characterized by high internal com-
plexity and low external complexity.

A cross-industry study of HADOOP® workloads shows
that more than 60% of HADOOP® jobs operate on relatively
small input datasets ranging from a few MBs to a few GBs,
and can be executed in memory. Most of these workloads are
iterative, that is, the output of reduce tasks is fed back to the
map tasks. In certain cases, the output of a job may be post-
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processed by another job(s) before being fed back. Multi job
iterative applications can potentially be reduced to a single-
job structure using vertical and horizontal packing.

HADOOP® is unaware of the iterative nature of workloads
and treats each iteration as an independent job, which leads to
sub-optimal performance. A workload being iterative is an
application-level property and can be treated as such without
modifying the underlying middleware.

A description will now be given of a HADOOP® Distrib-
uted File System (HDFS) and model data, in accordance with
an embodiment of the present principles.

In HADOOP®, all data transfer and synchronization is
done using the HADOOP® Distributed File System (HDFS).
Distributed file systems provide areliable and scalable way to
share large datasets. Most distributed file systems impose
performance penalties in the form of disk accesses, network
lookup operations, consistency management and replication.
While these overheads can be overlooked (and are somewhat
necessary) for sharing and storing large datasets, they become
significant and unnecessary for small short-lived data.

In iterative workloads, the output of reduce tasks (hence-
forth model) is written to HDFS and read in the next iteration
(implicitly or explicitly). Each iteration refines the model
until a termination condition is satisfied. The output of reduce
tasks from the last iteration is the final result. Model data is
small and transient and can potentially be kept in memory and
transferred over a faster data path.

A description will now be given regarding job launch time
and input data, in accordance with an embodiment of the
present principles.

HADOOP® launches a new job in every iteration which
spawns a new set of maps and reduces tasks that execute the
same code repeatedly. Launching and scheduling new jobs/
JVMs is expensive. Also, invariant input data is read from
HDFEFS repeatedly in each iteration (during the launch of map
tasks) and parsed as key/value pairs. Launching a job and
reading input data can take as much time as execution of a
map or reduce task.

The first generation of map and reduce tasks could poten-
tially be kept alive throughout the lifetime of the application.
This would save the time spent on re-launching jobs as well as
re-reading invariant input data without requiring an input data
cache.

A description will now be given regarding synchronous
data transfer and execution, in accordance with an embodi-
ment of the present principles.

In an iterative HADOOP® workflow, the next job/iteration
is launched upon completion of the current job. Although the
real dependence is on the previous jobs outputs, by blocking
the completion of the entire job (i.e., all reduce tasks), this
need for input availability is implicitly satisfied in a collective
sense. In doing so, however, room for asynchrony and paral-
lelism (across iterations) is lost.

A job is a collection of map and reduce tasks, which are
consumers and producers, respectively, in an iterative work-
flow. Not all reduce tasks in the job finish at the same time.
Depending on the interaction of the partitioner function with
the dataset, this skew in reducer completion times can vary
significantly. There are several reasons for this. First, the start
timestamp of each reduce task can be different. Second, the
size of input data assigned to each reduce task can be differ-
ent. Third, nodes in the cluster can perform differently.
Fourth, the HADOOP® scheduler can perform sub-opti-
mally.

We have observed skews of up to 40% for certain input
datasets. It would be beneficial to introduce asynchrony and
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overlap communication with computation in order to enable
parallel execution between reduce tasks from iteration n and
map tasks from iteration n+1.

An overview of Nimble will now be given, in accordance
with an embodiment of the present principles.

We have designed and implemented a software accelerator
for iterative jobs, called Nimble. Nimble includes two key
components: (i) an MPI-based data transfer and synchroni-
zation library, and (ii) a source-to-source compiler for
HADOOP® applications. Herein, we present Nimble’s
design, which was converged upon after several iterations.
We started by modifying HADOOP® and the applications to
see how much performance could be obtained. We then
worked on identifying ways to take the changes out of
HADOOP® and developing source-to-source transforma-
tions for applications alongside the MPI-based library.

Nimble co-exists with HADOOP® /HDFS. The applica-
tions are preprocessed and optimized using a source-to-
source compiler (henceforth “Nimble compiler™). In the pro-
cess: (i) certain invocations to HDFS are selectively replaced
by invocations to the MPI-based library (henceforth Nimble
library). Additional optimizations are applied to: (ii) keep
map tasks alive during the entire lifetime of the application in
order to minimize redundant I/O and job launch overhead,
(iii) enable concurrent execution between map tasks and
reduce tasks across iterations.

In addition to applying source-to-source transformations, a
number ofhacks had to be applied to un-modify HADOOP®,
such as overriding Java encapsulation, using HADOOP®’s
fault tolerance mechanism for performance, evicting
HADOOP® cache, among others. This allows Nimble to be
used alongside different HADOOP® stacks.

The key guiding principle in Nimble’s design is that the
HADOOP® stack should stay unmodified and the developer
effort required for adopting it should be negligible. Two
observations allow us to attempt this design. First, there are
opportunities to optimize performance at the application
level. These opportunities can be leveraged using source-to-
source compilers, which are relatively less explored in the big
data space. Second, parts of the middleware that are at the
edge (interact directly with the applications) can be brought
up to the application space and modified if needed, leaving the
underlying middleware unmodified.

MPI and MapReduce/HADOOP® are the two most com-
monly used technologies for cluster computing. They have
complimentary properties. HADOOP® exports a high-level
Java based API that provides ease of programming, scalabil-
ity and fault-tolerance. HDFS is the underlying data commu-
nication mechanism, which is well-suited for sharing and
storing large datasets in a distributed memory cluster but
performs sub-optimally for small short-lived data. MPI, on
the other hand, provides a low-level programming interface
but performs extremely well for small transient data. MPI is
also well supported by the open-source community. MPI
collective operations have been optimized over the years and
demonstrate good performance for broadcast and multicast.
The two technologies can potentially be composed at the
application level, without modifying the underlying stack.

A description will now be given of a Nimble library, in
accordance with an embodiment of the present principles.

The model data generated during execution of iterative/
multi-wave HADOOP® applications is relatively small and
often gets smaller as the job progresses. Unlike input data
which persists during the entire lifetime of an application
(often days or weeks), model data is short-lived and alive for
only one iteration (typically seconds or minutes). Also, since
model data is usually read by a large fraction of active nodes,
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a broadcast/multicast-based sharing mechanism is more suit-
able than a lookup-based one. Despite the differences in their
properties, model and input data are treated identically by
HDFS.

A lookup/pull-based data transfer model (e.g., HDFS) is
convenient when the producer-consumer relationships are
unknown. In practice, inter-job data-dependence relation-
ships can be derived from HADOOP® job workflows and
push-based data transfer mechanisms can be employed for
better performance.

As part of Nimble library, we design an MPI-based data
distribution mechanism for HADOOP® applications that can
sit alongside HDFS and be selectively used by applications
(see, e.g., FIG. 2). It is currently used for: (i) transferring
model data (as part of FastPath Optimization); and (ii) syn-
chronization between map and reduce tasks (needed for
TaskReuse and AsyncPipeline optimizations). These optimi-
zations are described hereinafter. A brief overview of Nim-
ble’s MPI-based data transfer architecture follows.

FIG. 2 shows a system 200, in accordance with an embodi-
ment of the present principles. The system 200 includes a
Map Reduce Application-1 (App-1) 210, a Map Reduce
Application-2 (App-2) 220, a HADOOP® Distributed File
System 230, an operating system (OS) 240, a Nimble com-
piler 250, an Nimble library 260 (interchangeably referred to
herein as “Nimble”), and a HADOOP® stack 270.

Nimble’s data distribution mechanism has been designed
on the model of distributed object stores. The key difference
is that remote lookups are avoided by keeping the reads
always local. Accordingly, writes are pushed to the consum-
ers using a broadcast/multicast mechanism. Components of
the object store are designed to support concurrent accesses
and minimize contention.

FIG. 3 shows the architecture of a Nimble (MPI-based data
distribution) library 300, in accordance with an embodiment
of the present principles. The Nimble library 300 can be
implemented, for example, as the Nimble library 260 shown
in FIG. 2.

The Nimble library 300 has been implemented in C and
runs as a service on each node. Client Java processes 310A
and 310B (in the HADOOP® application) communicate with
the service through a JNI library (designed by the characters
“JNI” in FIG. 3). Nimble service has three key components: a
client manager 320; an object store 330; and a networking
module 340.

The client manager 320 handles incoming requests from
map and reduces tasks. An admission control thread 321 waits
for registration requests from client threads within the same
physical host. On detecting a new registration, the admission
control thread 321 creates a session for the incoming client
and hands it off to a worker thread 322, dedicated to serving
the client till the lifetime of the session. A session manager
367 is used to manage a session. The client 310A co-ordinates
with the peer worker thread 322 to establish a shared memory
region as an [/O channel 312A to save an extra round of
copying from client address space. Similarly, the client 310B
co-ordinates with the peer worker thread 322 to establish a
shared memory region as an I/O channel 312B to save an extra
round of copying from client address space.

The worker thread 322 serves the 1O operations issued by
the client 310, which include write, probe, read, delete,
writeall, and readall for various object types supported by
Nimble (blobs 331, streams 332, and notifications 333).

The object store 330 resides in main memory. Each object
type (i.e., blobs 331, streams 332, and notifications 333) has
a distinct namespace. Objects are stored as variable-size lists
of fixed-size memory chunks in a chunk store 334. The meta-



US 9,201,638 B2

9

data and lifecycle of each object type is handled separately.
Chunks come from a pre-allocated pool of memory, which
can be grown-on-demand and trimmed according to applica-
tion needs. A memory manager 350 is responsible for pre-
allocation and garbage collection, and includes a pre-alloca-
tor 351 and a garbage collector 352 for these tasks,
respectively.

To maximize throughput of concurrent writes, an object
lifecycle manager 377 maintains distinct partitions for vari-
ous object types and their lifecycle stage to avoid false con-
tentions. For transmission, the chunks are fragmented into
maximum transfer units (MTUs), to allow for tuning and
maximal network throughput.

If'the set of objects grows to a large number, the overheads
of crossing over to Nimble’s address space and propagation
can become non-trivial for the set as a whole. To address this
issue, Nimble 300 exports the readall/writeall interface to
buffer all reads and writes within the clients address space and
commit the entire buffer to the local Nimble instance in a
single transaction.

The networking module 340 handles the sending and
receiving of data. Write propagation is done using MPI broad-
cast. Since there is one sender per node and multiple clients
(i.e., reduce tasks), the write requests are queued up and
outgoing data is buffered in the object store.

To ensure safe access of IO channel, writes block the client
thread for local write completion. Write propagation to the
cluster, however, happens asynchronously coordinated by a
coherence manager 341 via periodic heartbeats. The heart-
beat mechanism periodically refreshes a globally replicated
directory of pending updates/deletions/etc., which offers a
common schedule for data exchange across various instances
in the cluster. For simplicity, updates are atomic and version-
ing, to maintain stale objects and so forth, is not supported.

Invocations to the Nimble library 300 are automatically
inserted into the application by the Nimble source-to-source
compiler described next.

FIG. 4 shows an exemplary method 400 for software accel-
eration for iterative HADOOP® jobs using a TaskReuse Opti-
mization, in accordance with an embodiment of the present
principles.

At step 405, locate an invocation to the runJob( ) function
and guard the runJob( ) function by a flag that returns true for
a first iteration and false otherwise.

At step 410, move the body of map( ) function to a new
function my_map( ).

At step 415, create a new body for map( ) function that
stores incoming key/value pairs in a hashtable T1.

Atstep 420, insert an infinite outer loop L1 at the beginning
of map’s close( ) function.

At step 425, insert, inside outer loop L1, an inner loop 1.2
that iterates over key/value pairs in hashtable t.

At step 430, for each key/value pair, insert an invocation to
my_map( ) function, inside inner loop [.2.

At step 435, insert a statement to notify of the completion
of the map, inside outer loop L1.

At step 440, insert a statement to invoke internal
HADOOP® function for flushing and closing the data output
stream, inside outer loop L1.

At step 445, insert a statement to wait for the configuration
object of the next iteration, inside outer loop 1.

At step 450, insert a statement to throw an exception at the
end ofreduce’s close( ) function, guarded by the convergence
check.
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FIG. 5 shows an exemplary method 500 for software accel-
eration for iterative HADOOP® jobs using an AsyncPipeline
Optimization, in accordance with an embodiment of the
present principles.

At step 505, replace an invocation to the runJob( ) function
by the submitJob( ) function.

At step 510, insert a function call for blocking and reading
model data from Nimble when available, inside loop 11 in the
body of map’s close( ) function.

A further description will now be given of Nimble optimi-
zations, in accordance with an embodiment of the present
principles.

Nimble is an optimizing compiler for HADOOP® appli-
cations. The Nimble compiler 250, as shown in FIG. 2.
applies source-code and byte-code transformations. Before
applying the optimizations, the compiler 250 identifies the
overall structure of the application, i.e. the main job being
optimized, the body of the outer while/for loop in the driver,
the map function and the reduce function. This can be done
using a combination of static program analysis and execution
trace analysis.

A description will now be given of a fast path optimization,
in accordance with an embodiment of the present principles.

FIG. 6 shows an exemplary method 600 for software accel-
eration for iterative HADOOP® jobs using a FastPath opti-
mization, in accordance with an embodiment of the present
principles. The method 600 automatically and selectively
replaces invocations to the HADOOP® Distributed File Sys-
tem with invocations to the Message Passing Interface (the
MPI-based data distribution library).

At step 610, run trace analysis and identify the main job
(i.e., the job that runs the longest).

At step 620, identify the while convergence loop in the
driver of the main job. If this step fails, the method is termi-
nated.

At step 630, identify map( ) and reduce( ) functions from
their signatures.

At step 640, locate HDFS invocation
<outputStream>.collect(<key>, <value>) in reduce( ) func-
tion.

At step 650, replace <outputStream>.collect(<key>,
<value>) in reduce( ) function by Nimble invocation
write_Nimble(<key>, <value>).

At step 660, insert an invocation to <outputStream>.collect
(<key>, <value>) after the while convergence loop.

At step 670, parse the body of the while convergence loop
in the driver and identify statements with keywords related
with the file interface, e.g., File system, File, and so forth.
Mark the first and last statements. Ifthis step fails, the method
is terminated.

At step 680, find a while loop that occurs after the first
statement but before the last statement and includes at least
one invocation to the InputStream interface, e.g., readFile. If
this step fails, the method is terminated.

At step 690, replace the body of this while loop by a while
loop that reads from the Nimble object store (readobj_N-
imble( )). Copy the serialization code into this loop.

At step 695, comment out the statements outside the while
loop between the first and last statements.

Model data can potentially be merged and read along with
input data files. Since the Nimble library is only used for
communicating variant/model data, a mechanism is needed to
separate it from invariant input data. We define a new directive
called #pragmavariant, which can be used by developers to
mark variant data elements that constitute the model (as
shown in the definition of class Vertex in TABLE 2). The
Nimble compiler 250 does the rest. The Nimble compiler 250
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generates code for writing and reading variant data using the
Nimble library 500 while invariant data is handled as before
(i.e., written to HDFS and read implicitly in the next itera-
tion). The use of pragma variant is the only developer assis-
tance needed in Nimble. In another embodiment, we elimi-
nate the need for this construct by automatically identifying
variant data using a combination of static and runtime data
dependence analysis. An original code structure is shown in
TABLE 2. Application of fast path optimization, along with
other Nimble optimizations, is shown in TABLE 3 herein
below.

TABLE 2

public class Vertex implements Writeable {
protected String id;
protected Set<VertexEdge> neighbors;
protected Map<String, Writable> labels;
protected Double Writable pagerank;

public class PageRank{
public void execute () {

while (iteration < MAX_STEPS) {
JobConf config = new JobConf( ) ;

job = JobClient.runJob(config) ; // blocks for job completion
if (is_converged (config)) {
break;

}

iteration™™;

public class PRMap extends MapReduceBase implements Mapper <Test,
Vertex, Text, ObjectWritable > {
public void map (Text key, Vertex value, OutputCollector <Text,
ObjectWritable> collector, Reporter reporter) {
{body of map}
collector.collect (map_output_key, map_output_value) ;

public void close () {

}

public class PRReduce extends MapReduceBase implements Reducer <Text,
ObjectWritable, Text, Vertex> {
public void reduce (Text key, Interator < ObjectWritable > values,
OutputCollector <Text, Vertex> collector, Reporter
reporter) {
{body of reduce}
collector.collect (output_key, output_value) ;

public void close ()

¥
¥

A description will now be given of task reuse optimization,
in accordance with an embodiment of the present principles.

A new job is launched in every iteration (by invoking
runJob( )) that spawns a new set of map and reduce tasks,
which execute the same code repeatedly. There are significant
overheads associated with launching a new set of map and
reduce tasks in every iteration. This includes: (i) the cost of
launching JVMs; (ii) the cost of scheduling tasks in the clus-
ter; and (iii) the cost of re-reading invariant input data. These
overheads can be minimized by launching map tasks once and
keeping them alive for the entire duration of the application.
However, doing this without modifying HADOOP® is non-
trivial.

Map task is described by three key functions: config( ),
map( ) and close( ). When a map task is launched, config( ) is
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invoked first, followed by one or more invocations of map( )
depending on the input data size, followed by close( ). After
the close( ) function executes to completion, the control is
returned back to the HADOOP middleware, which flushes
and closes the output stream thereby ending the process asso-
ciated with the map task. When the output stream is closed,
the JobTracker receives a signal indicating that the map task
has ended. The output of the map task is passed on to the
shuftle phase, eventually causing the reduce tasks to execute.

The Nimble compiler applies six key transformations to
keep map tasks alive. First, in order to prevent re-launching of
map/reduce tasks in every iteration, the invocation to run
Job() is guarded (conditioned upon) by a flag, which is set to
true for the first iteration and false for the remaining itera-
tions.

Second, the entire body/code of the map( ) function is
moved to the beginning of the close( ) function. The new
map( ) function simply stores the incoming key/value pairs in
a hash table for later use by the close( ) function.

Third, a two-level nested loop is introduced in the new
body of the close( ) function. The inner loop iterates over the
key/value pairs stored in the hash table by the map( ) function.
The outer loop keeps the map task alive throughout the life-
time of the application.

Fourth, each iteration of the outer loop should be equiva-
lent to the execution of a map task in the original version. In
order to accomplish this, Nimble needs to make sure that the
output stream is flushed and closed at the end of each itera-
tion, so that map output data can be passed on to the shuffle
phase. In the original version, this would be done by the
HADOOP® middleware at the end of each map task. In the
transformed version, the control is retained within the map
task and not returned back to the middleware at the end of
each iteration. Therefore, the Nimble compiler has to insert
suitable invocations to the internal HADOOP® functions at
the end of the iteration.

Intuitively speaking, Nimble in-lines some of the function-
ality of the middleware and brings it up to application space.
This approach is powerful but technically challenging. One of
the challenges in invoking internal HADOOP® functions
from the application is that some of them are private functions
not accessible from the application space. In order to over-
come this challenge, Nimble overrides Java encapsulation (as
described herein).

Fifth, a blocking call (nimble.wait( )) is inserted at the end
of every iteration (of the outer loop in close( ) function). The
purpose is to wait for the configuration object of the next
iteration to become available in the object store.

In the original code structure shown in TABLE 2, the
configuration object is passed on to map and reduce tasks as
a parameter to runJob( ). In the transformed code structure
after applying Nimble optimization as shown in TABLE 3,
the configuration object is communicated by the driver to map
and reduce tasks using Nimble.

Sixth, reduce tasks can potentially be kept alive using a
similar approach (inserting a loop in the body of reduce).
However, implementing the same approach for reduce would
require substantial portions of HADOOP® to be brought up
to the application space, including parts of the shuffle logic
which is embedded deep inside HADOOP®. Instead, Nimble
employs HADOOP®’s fault-tolerance mechanism to auto-
matically re-launch reduce tasks, as described next.

The Nimble compiler inserts a statement to throw an
exception at the end of the body of reduce( ) function. Con-
sequently, every time a reduce task finishes, an exception is
thrown and HADOOP® is led to believe that the execution
did not go through successfully. As aresult, a new reduce task
is launched immediately. This reduce task attempts to fetch
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data generated by map tasks. Without intervention, it would
fetch the data from the last iteration and get into an infinite
loop. In order to avoid this, Nimble deletes the data from the
last iteration and evicts HADOOP®’s cache. The reduce task
now blocks on the data that would be generated in the next
round. Since the launching and scheduling of reduce tasks
happens in parallel with the execution of map tasks, the over-
heads are completely hidden. TABLE 3 shows the trans-
formed code structure after applying Nimble optimizations.

TABLE 3

public class Vertex implements Writable {
protected String id;
protected Set<VertexEdge> neighbors;
protected Map<String, Writable> labels;
# pragma variant
Protected Double Writable pagerank;

public class PageRank {
public void execute () {

while (iteration < MAX_STEPS ) {
jobConf config = new JobConf ( ) ;

Nimble.notify (ITERATION_START) ;

if (iteration = = 0) { // launch map/reduce tasks only once
job = JobClient.submitJob (config); // non-blocking job
submission

Nimble.waitall (config.getNumReduce ( ), REDUCE_
COMPLETE) ;
if (is_converged(config)) {

number.set_converged ( ) ;

break;

iteration**;

public class PRMap..implements Mapper < Text, Vertex, Text,
ObjectWritable>{
public void my_map (Text key, Vertex value, OutputCollector
collector ..) {
(body of original map function}
collector.collect (map_output_key, map_output_value) ;

public void map (Text key, Vertex value, OutputCollector collector ..) {
Nimble.collect_inout(key, value) ; // collect key/value pairs

¥
public void close () {

while (true) { // loopy map to enable TaskReuse optimization
\\ block on data and read model output as soon as it comes
\\ update model speculatively (for asynchrony/pipelining)
Nimble.block_and_read_model () ; // read from Nimble object store

// Tterate over collected key/value pairs and invoke map
Tterator <Text> key_i = number.get_inout_keys_iterator () ;
while (key_i.hasNext () {
if (i>0){
value = Nimble.get_input_value(key) ;
Nimble.merge_input_model (value, model) ; // variant field
¥
this.my_map (key, value, collector, reporter) ; // invoke the
actual map

if ( Nimble.is_converged ( )) {
break; // abort

my_close (); // original close

Nimble.notify (MAP_COMPLETE) ;

i++;

Nimble.call_hadoop_internall () ; // callback into HADOOP
Nimble.wait (ITERATION_START) ; // wait for next iteration

14
TABLE 3-continued

public class PRReduce.. implements Reducer <Text, ObjectWritable, Text,
Vertex> {
public void reduce ( Text key, Iterator values, OutputCollector
5 collector..) {
{body of original reduce function}
model_val = Nimble.get_model_frm_val (value) ; // derived from
variant fld
if (!Nimble.is_converged ()) {
Nimble.write_model (output_key, model_val) ; // send data using
Nimble

telse{

collector.collect (output_key, model_val);

}

¥
public void close () {
my_close () 1// original close
Nimble.notify (REDUCE_COMPLETE) ;
Nimble.call_hadoop_internal?2 () ; // callback into HADOOP
Nimble.wait (ITERATION_START) ; // wait for next iteration
if (!Nimble.is_converged ()) {
// leverage HADOOP’s fault-tolerance to re-launch reduce task
throw new IOException (“Re-launch reduce task™)

15

20

A description will now be given of AsyncPipeline Optimi-
zation reduce tasks, in accordance with an embodiment of the
present principles.

In a typical iterative HADOOP® workflow, the job
launcher blocks on completion of current job before launch-
ing the next job/iteration. Although the real dependence is on
previous jobs outputs, by blocking on the completion of the
entire job, this need for input availability is implicitly satisfied
in a collective sense. In doing so, however, room for asyn-
chrony and parallelism (across iterations) is lost.

As noted above, a job is a collection of map and reduce
tasks, which are consumers and producers respectively in an
iterative workflow. Not all the reduce tasks in the job finish at
the same time. Depending on the interaction of the partitioner
function with the dataset, this skew in reducer completion
times can vary significantly. In HADOOP®), the decision to
launch the next job is taken after the entire batch of reduce
tasks executes to completion.

AsyncPipeline optimization exploits this headroom for
asynchrony by ignoring the job completion barrier and allow-
ing the consumers (i.e., map tasks) to block on data instead,
which gets pushed to them as it is produced in the system.
This is done by: (i) replacing occurrences of JobClientrun-
Job() by the non-blocking call JobClientsubmitJob(); and (ii)
inserting an invocation to nimble.block_and_read_model( )
at the beginning of map tasks to block on data produced by
reduce tasks. As a result of this transformation, execution of
reduce tasks from one iteration can be overlapped with execu-
tion of map tasks from next iteration. TABLE 3 shows the
final transformed code for the code structure in TABLE 2.

Thus, we define a software accelerator as a combination of
a performance library and a source-to-source compiler. We
argue that software accelerators are a good vehicle for deliv-
ery of ideas and performance optimizations for existing
middleware and applications. We present Nimble, a software
accelerator for HADOOP® that optimizes application perfor-
mance by selectively replacing invocations to HDFS by invo-
cations to an MPI-based library. Nimble also applies optimi-
zations to keep map and reduce tasks alive across iterations in
order to prevent redundant start-up and data access costs; and
to pipeline data from reduce tasks to map tasks in order to
enable parallelism across iterations.
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Nimble can be incrementally deployed in existing
HADOOP® deployments and be easily combined with other
performance solutions. Nimble does not require any modifi-
cation to the HADOOP® stack or API. Experiments have
confirmed that Nimble is compatible with alternate
HADOOP® stacks.

Embodiments described herein may be entirely hardware,
entirely software or including both hardware and software
elements. In a preferred embodiment, the present invention is
implemented in software, which includes but is not limited to
firmware, resident software, microcode, etc.

Embodiments may include a computer program product
accessible from a computer-usable or computer-readable
medium providing program code for use by or in connection
with a computer or any instruction execution system. A com-
puter-usable or computer readable medium may include any
apparatus that stores, communicates, propagates, or trans-
ports the program for use by or in connection with the instruc-
tion execution system, apparatus, or device. The medium can
be magnetic, optical, electronic, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propaga-
tion medium. The medium may include a computer-readable
medium such as a semiconductor or solid state memory, mag-
netic tape, a removable computer diskette, a random access
memory (RAM), a read-only memory (ROM), a rigid mag-
netic disk and an optical disk, etc.

It is to be appreciated that the use of any of the following
“/”, “and/or”, and “at least one of”, for example, in the cases
of “A/B”, “A and/or B” and “at least one of A and B”, is
intended to encompass the selection of the first listed option
(A) only, or the selection of the second listed option (B) only,
or the selection of both options (A and B). As a further
example, in the cases of “A, B, and/or C”” and “at least one of
A, B, and C”, such phrasing is intended to encompass the
selection of the first listed option (A) only, or the selection of
the second listed option (B) only, or the selection of the third
listed option (C) only, or the selection of the first and the
second listed options (A and B) only, or the selection of the
first and third listed options (A and C) only, or the selection of
the second and third listed options (B and C) only, or the
selection of all three options (A and B and C). This may be
extended, as readily apparent by one of ordinary skill in this
and related arts, for as many items listed.

Having described preferred embodiments of a system and
method (which are intended to be illustrative and not limit-
ing), it is noted that modifications and variations can be made
by persons skilled in the art in light of the above teachings. It
is therefore to be understood that changes may be made in the
particular embodiments disclosed which are within the scope
and spirit of the invention as outlined by the appended claims.
Having thus described aspects of the invention, with the
details and particularity required by the patent laws, what is
claimed and desired protected by Letters Patent is set forth in
the appended claims.

What is claimed is:

1. A method, comprising:

identifying a set of map tasks and reduce tasks capable of
being reused across multiple iterations of an iterative
HADOOP® application; and

reducing a system load imparted on a computer system
executing the iterative HADOOP® application by trans-
forming a source code of the iterative HADOOP® appli-
cation to launch the map tasks in the set only once and
keep the map tasks in the set alive for an entirety of the
execution of the iterative HADOOP® application;
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wherein the map tasks in the set are kept alive for the
entirety of the execution by guarding an invocation to a
runjob( ) function beginning at a first iteration of the
iterative HADOOP® application to prevent a re-launch-
ing of any of the maps tasks and reduce tasks in the set in
subsequent iterations of the iterative HADOOP® appli-
cation, the invocation to the runlob( ) function is
guarded by a flag, which is set to true for the first itera-
tion and false for the subsequent iterations.
2. The method of claim 1, the system load comprises at
least one of a cost of re-launching virtual machines, a cost of
scheduling tasks in a HADOOP® cluster, and a cost of re-
reading invariant input data.
3. The method of claim 1, wherein the reduce tasks in the
set are kept alive for the entirety of the execution by selec-
tively inserting a statement to throw an exception at an end of
each reduce task in the set, and wherein a decision to insert the
statement is based on a result of a convergence check of a
corresponding iteration of the iterative HADOOP® applica-
tion.
4. The method of claim 1,
wherein the map tasks in the set are kept alive for the
entirety of the execution by moving code of a map( )
function of the iterative HADOOP® application to a
new map( ) function added to at least one map task in the
set and storing key/value pairs in a hash table by the new
map( ) function, the key/value pairs representing inter-
mediate results produced by map tasks in the set.
5. The method of claim 4, wherein the map tasks in the set
are kept alive for the entirety of the execution by introducing
a two-level nested loop in the new map( ) function, the two-
level nest loop having an inner loop and an outer loop,
wherein the inner loop iterates over the key/value pairs stored
in the hash table, and the outer loop supports keeping the map
tasks in the set alive for the entirety of the execution.
6. The method of claim 5, wherein the map tasks in the set
are kept alive for the entirety of the execution by inserting a
statement in the outer loop to invoke an internal HADOOP®
function for flushing and closing a data output stream of the
iterative HADOOP® application.
7. The method of claim 5, wherein the map tasks in the set
are kept alive for the entirety of the execution by inserting a
statement in the outer loop to wait for a configuration object
of a next iteration of the iterative HADOOP® application.
8. A non-transitory storage medium configured with
instructions for carrying out the following steps:
identifying a set of map tasks and reduce tasks capable of
being reused across multiple iterations of an iterative
HADOOP® application; and

reducing a system load imparted on a computer system
executing the iterative HADOOP® application by trans-
forming a source code of the iterative HADOOP® appli-
cation to launch the map tasks in the set only once and
keep the map tasks in the set alive for an entirety of the
execution of the iterative HADOOP® application;

wherein the map tasks in the set are kept alive for the
entirety of the execution by guarding an invocation to a
runjob0 function beginning at a first iteration of the
iterative HADOOP® application to prevent a re-launch-
ing of any of the maps tasks and reduce tasks in the set in
subsequent iterations of the iterative HADOOP® appli-
cation, the invocation to the runlob( ) function is
guarded by a flag, which is set to true for the first itera-
tion and false for the subsequent iterations.
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